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Dynamics of defects in parametrically excited capillary ripples
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Investigations of parametrically excited capillary ripples—a perfect structure consisting of two mutu-
ally orthogonal pairs of standing waves—reveal that two topological defects of the same sign belonging
to the waves, traveling in opposite directions in one pair, may form a stable bound state. Individual
dislocations in the form of such bound states may interact with each other, the interaction being the
most effective if they consist of defects belonging to one pair. It is shown that the dislocations may ei-
ther annihilate, if they have opposite topological charges, or are arranged into quasistable states in the
form of a linear chain, in the case of like topological charges.

PACS number(s): 47.35.+1, 64.60.Cn, 47.20.—k

I. INTRODUCTION

Parametrically excited capillary ripples have been in-
tensively investigated, in particular, in analysis of pattern
formation and the transition to chaos. Depending on pa-
rameters of a liquid, spectral composition, and amplitude
of a pump field on the surface of a horizontal liquid layer
vibrating vertically, different perfect structures in the
form of squares, hexahedrons [1], or the so-called quasi-
structures [2,3], which are macroscopic analogs of quasi-
crystals in solid state physics, may be observed in spatial-
ly extended systems.

The dynamics of the square structures formed by two
mutually orthogonal pairs of standing capillary waves
[4,5] that appear in a broad range of the parameters of a
liquid was investigated in ample detail. It was found [5]
that modulation waves arise against the background of a
square lattice even at a slight excess over the threshold of
parametric instability. A further increase in the ampli-
tude of the pump field leads to an intensification of the
envelope waves and to the transition from regular pat-
terns to spatiotemporal chaos.

However, modulation waves exist in the liquid layers
whose depth is greater than the wavelength of capillary
waves. If the layer is sufficiently thin, which is indicative
of strong energy dissipation in the boundary layer of
capillary waves at the bottom, no modulation waves are
observed. In this case, irregularities in the lattice formed
by capillary waves may be associated with the emergence
of chains of dislocations at the boundaries of the
domains, i.e., the regions with a perfect field structure.
For instance, it was revealed in [6] that in rather thin lay-
ers of a liquid the transition from an initially irregular
state to a perfect square lattice occurs through formation
on the liquid surface of an ensemble of domains. The
transition to a perfect structure may be represented as a
process of domain collapse or merging. Typical features
of this process were recently analyzed in [6].

In this paper we investigate the dynamics of an indivi-
dual dislocation, its fine structure, as well as elementary
acts of interaction of the dislocations. Until recently dy-
namics of dislocations was investigated primarily in sys-
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tems without propagating perturbations, namely, in
liquid crystals [7—9] or in liquids with convection [10,11].
We believe that the dynamics of dislocations in capillary
ripples differs from that in the systems enumerated above
because, in the case of parametric excitation, the struc-
tures are formed as a result of interaction of the wave
propagating in a spatially homogeneous oscillating field.
No theoretical calculations of the dynamics of disloca-
tions in such fields are available yet, therefore experimen-
tal investigation is of particular significance.

II. EXPERIMENT

Experiments were performed on capillary ripples
parametrically excited on the surface of a liquid poured
into a circular cavity 157 mm in diameter. Silicon oil
IIMC-5 with kinematic viscosity v=0.05 cm?/s, density
p=0.89 g/cm®, and surface tension coefficient o =17
dyn/cm was taken as an operating liquid. (All the data
are given for the temperature of 25°C.) The choice of sil-
icon oil as an operating liquid is explained by its low eva-
porability and resistance to surface contamination.

Vertical vibrations of the cavity (see Fig. 1) were pro-
duced by the Brul & Kjar 4805 vibrostand which was fed
by sinusoidal voltage through the Brul & Kjar 2707
power amplifier. A test generator built into the Brul &
Kjar 2034 spectrum analyzer was used as a source of
sinusoidal voltage. The amplitude of amplification of
vertical vibrations of the cavity was measured by means
of the KD29 piezoaccelerometer fabricated by VEB Me-
tra Bef und Frequenztechnik Radebeul. The signal from
KD29 was transmitted through the Brul & Kjar 2035
preamplifier to the spectrum analyzer. Such a procedure
enabled us to control not only the amplitude of the pump
field but also its spectral composition.

The image of capillary ripples was recorded by a video
camera placed at a distance of about 130 cm from the
surface of the cavity. Six low-power incandescent lamps
arranged around the objective of the video camera pro-
vided sufficiently uniform illumination of the surface of
capillary ripples.

In analyzing the videotape obtained in the experiment
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FIG. 1. Scheme of experiment. VCR is a video camera
recorder and PC AT is an AT-type personal computer. A Brul
& Kjar Model 2035 preamplifier and a Model Pericolor 2000
image processor are also shown.

sequences of pictures were frame-grabbed by means of
“Pericolor 2000,” a system for image processing coupled
to a personal computer.

A. Image processing

Investigation of the dynamics of individual dislocations
necessitates a regular procedure allowing for their
identification in the fields of brightness of capillary rip-
ples. To this end, one needs, first of all, to determine the
complex amplitude of capillary ripples. We did it follow-
ing the procedure proposed in [7], which dynamics of de-
fects in one-dimensional rolls appearing at electrohydro-
dynamic convection in liquid crystals was investigated.

The two-dimensional Fourier spectrum was deter-
mined by the field of image brightness. For the square
lattice formed by two mutually orthogonal pairs of coun-
terpropagating waves, this spectrum is a set of spikes. It
is worthy of notice that by virtue of the inertia of a video
camera, the image of parametrically excited capillary rip-
ples is averaged in time. The relationship between sur-
face deviation 7 and changes of the image brightness 8/
was broadly discussed in the literature and we omit it
here. We only note that to the first approximation one
can take 8I~(n?). Then, for two pairs of standing
capillary waves whose wave vectors are oriented along
the O0X and OY axes, acos(wt)cos(kx) and
b cos(wt)cos(ky), the spectrum of image brightness con-
sists of the spatial harmonics with wave vectors
K, =(+2k,0), K,=(0,£2k), K, =(xk,tk), and
K, ,=(Lk, ¥k). The amplitudes of these spatial har-
monics are proportional to the following parameters:
A(K,)~a* A(K,)~b? and 4(K,,), 4(K},)~ab.
In order to obtain information about capillary waves in
each mutually orthogonal pair we filtered in the spectrum
of image brightness the harmonics in the neighborhood
of spectral peaks (£2k,0) and (0,£2k). From these har-
monics in the neighborhood of each peak we calculated
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FIG. 2. (a) Field of capillary ripples. (b) Fourier spectrum.
The dashed lines mark the spectral peaks for which the en-
velope fields were investigated. (c) Field of the amplitude of en-
velope for spectral peak 1. (d) Field of the phase of envelope for
spectral peak 1.
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the inverse Fourier transform supposing that the centroid
for all the harmonics belonging to the transmission band
of the filter is a zero spatial frequency. In this fashion we
determined the envelopes of capillary waves.

An example for determination of a complex amplitude
is presented in Fig. 2. The brightness field of capillary
ripples shown in Fig. 2(a) has two dislocations. The
Fourier spectrum calculated by this field of brightness
containing 256 X256 points is given in Fig. 2(b). The in-
verse Fourier transform was performed in the neighbor-
hood of the spectral peaks shown by the dashed circles in
Fig. 2(b) for 16X 16 harmonics. The field for the ampli-
tude of the envelope obtained in the calculations of the
inverse Fourier transform from the harmonics in region 1
is presented in Fig. 2(c) and the phase field in Fig. 2(d).
One can see from these figures that each dislocation con-
tains two point defects slightly spaced apart. These two
defects have like topological charges while the disloca-
tions on the left and on the right of Fig. 2(d) have oppo-
site charges, —4 and + 4, respectively. (It is assumed
that the direction of increasing phase is counterclock-
wise.) The minima of the amplitudes of the envelopes de-
picted in Fig. 2(c) were taken as the positions of the de-
fects. The field amplitude was almost zero at these
points.

The two dislocations in the field of capillary ripples
given in Fig. 2(a) belong to one wave pair. Calculations
of the inverse Fourier transforms by region 2 [see Fig.
2(b)] demonstrate that the envelope field contains no
dislocations. Neither amplitude decrease down to zero
nor integral phase advance in the path tracing around a
closed contour are observed at the site of expected de-
fects. Note that in our experiments we also observed
dislocations belonging to different pairs of capillary
waves. By determining the envelopes of all harmonics we
readily identified the location of dislocations in these
cases too.

B. Results of experiment

Dislocations in a regular lattice formed by standing
capillary waves were observed in a rather broad interval
of liquid layer thicknesses and frequencies and ampli-
tudes of the pump field. (The region of the existence of
such dislocations was investigated in [6].) The dynamics
of solitary dislocations was observed in experiments on a
liquid layer of thickness #=0.5 mm; the external force
frequency f was taken to be 100 Hz, and supercriticality
€ was varied in a narrow region about 0.5 (e=G/Gy—1,
where G is the amplitude of acceleration of the pump
field and G, is the threshold value at which parametric
generation occurs).

On formation of a perfect structure (this process was
investigated in [6]) for the parameters specified above,
dislocations appeared every now and then near the walls
of the cavity and performed rather complicated motions
all over the cavity until they escaped at the wall. Owing
to the fact that the mutually orthogonal pairs of waves
forming the square lattice contacted a circular wall, the
side boundary was a source of defects. It should be em-
phasized that, in the region of the parameters investigat-

ed in our experiment, the capillary ripples were immune
to spontaneous birth of dislocations. We did not observe
the birth of dislocations far from the walls, except for the
cases when we produced large-amplitude perturbations in
the layer (for example, by stirring the liquid inside a re-
gion of about 5 X5 wavelengths).

Each elementary dislocation consisted of two defects
having like topological charges (Fig. 2). One can see
from Fig. 2 that the defects in each dislocation are
displayed by a distance d, , relative to one another, pri-
marily, along the direction of wave propagation in the
pair. Measurements at different frequencies and supercri-
ticalities showed that the distance d,, amounted to
1.5-2.5 wavelengths.

Since the emergence of dislocations near the walls was
a random process, we were able to resolve the instants of
time when there were only two dislocations in the cavity.
This enabled us to observe elementary acts of interaction
of the dislocations belonging to different pairs or to one
wave pair. The dislocations could annihilate when they
had opposite topological charges and belonged to one
wave pair. The trajectories of the defects in such disloca-
tions are shown in Fig. 3(a). The change of the distance
d,, between the dislocation cores in time is demonstrat-
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FIG. 3. Annihilation of dislocations for €=0.5 and f=100
Hz: (a) trajectories of dislocations, X and Y are measured in
wavelengths; (b) distance between the dislocation cores (curve
d,,), projection of the distance onto the direction of wave prop-
agation in the pair (curve d ), and projection onto the trasversal
direction (curve d,); (c) the angle between the direction of wave
propagation in the pair and the line connecting the points of de-
fect location.
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ed in Fig. 3(b). The dislocation core is understood as the
arithmetic mean of the position of the defects forming the
dislocation. The curve d| corresponds to the projection
of the distance onto the direction of wave propagation,
and the curve d, onto the perpendicular direction. Thus,
in this example of annihilation the dislocations primarily
glide, i.e., the defects move across the capillary wave
fronts and, besides, the velocity of reprochement in-
creases with decreasing distance between the dislocations.
A perfect structure is born after annihilation of the dislo-
cations.

Experiment verifies that such a complete annihilation
is a rather typical process. However, we also observed, if
only very rarely, collisions of the dislocations belonging
to one wave pair and having opposite charges that gave
rise to the birth of dislocations with opposite topological
charges in the other wave pair. (Only two such interac-
tions were registered in the six-hour recordings of the ex-
periment.) An example of such a process is demonstrated
in Figs. 4(a) and 4(b). The trajectories of motion are
drawn in Fig. 4(a). During collision, one of the defects
belonging to the left dislocation annihilates with the de-
fect that has the opposite charge and belongs to the right
dislocation at the point marked by the asterisk. Two oth-
er defects (marked by R and L) with opposite charges are
spaced approximately 6A apart. As they approach each
other from the sites marked by the dots, dislocations are
born in the orthogonal wave pair. It is worthy of notice
that defect orientation relative to the capillary wave
fronts in each dislocation remains almost unchanged in
the course of collisions. In Fig. 4(b), the curves d, , and
d' , correspond to the distances between the dislocation
cores in mutually orthogonal pairs, while the curves d
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FIG. 4. Collision of dislocations with opposite topological
charges giving rise to the birth of a pair of dislocations in the
orthogonal wave pair for €=0.50 and f=102 Hz: (a) trajec-
tories of dislocations; (b) distances between merging and appear-
ing dislocations.
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FIG. 5. Trajectories of interacting dislocations belonging to
different wave pairs for €=0.56 and =103 Hz.

and d| and the curves d; and d correspond to the pro-
jections of the distance between the cores in the transver-
sal and parallel directions of wave propagation, respec-
tively. The dashed curves mark the distance between the
dislocations prior to collision, and the solid curves
represent that after collision. Clearly, the dislocations
climb prior to collision, i.e., move along the wave fronts.

The dislocations belonging to different wave pairs in-
teracted rather weakly. This process is demonstrated in
Fig. 5. Such dislocations could even go through each
other and no significant changes in their trajectories of
motion would occur. A small slowing down of the rela-
tive motion of the dislocations was observed when they
were very close to each other, but we failed in making
quantitative measurements.

Besides pairlike interactions of dislocations we investi-
gated the interaction of several individual dislocations.
Observations reveal that interaction of the dislocations
having like charges and belonging to one wave pair may
give rise to a linear chain of dislocations in the lattice.
Such a chain is depicted in Fig. 6(a). The same image but
on filtering and setting a contrast is given in Fig. 6(b).
Experiment shows that for the chain to be formed a local-
ized source of dislocations generating defects of the same

FIG. 6. Linear chain of dislocations for e=0.47 and f=102
Hz: (a) image of capillary ripples; (b) filtered and contrasted im-
age of a single wave pair.
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sign is needed. In the absence of such a source, the prob-
ability of appearance of a sufficient amount of disloca-
tions having the same sign in one pair is very low and no
linear chain is formed as a rule. The source of disloca-
tions may be localized due to the presence of solid parti-
cles at the wall of the cavity. The chain of dislocations
presented in Fig. 6 was obtained when a piece of cotton
thread was placed at the wall. A linear chain is formed
as follows. Every now and then, a dislocation appears
from the source of defects on the wall and climbs along
the wave pair front. The dislocations tend to align along
the wave fronts. The long-lived chains of dislocations al-
ways originate and end at the wall. The linear density of
dislocations is rather uniform but the distance between
them decreases from the walls to the center of the cavity.
We called such a dislocation chain a domain wall [6].
One can see from Fig. 6(b) that the domain wall consists
of the dislocations belonging to one wave pair only. It
was revealed that there were no defects in the domain
wall in the other wave pair. The wave fronts in it were
only distorted near the domain wall but the number of
wave fronts did not change in the transition across the
domain wall. The wave pairs were mutually orthogonal
on both sides of the domain wall.

How does a single dislocation interact with the domain
wall? This depends on whether the dislocation belongs to
the same wave pair as the dislocations constituting the
domain wall or to the other wave pair. The first case is
presented in Fig. 6. The dislocation that does not belong
to the domain wall [the defects forming this dislocation
are encircled in Fig. 6(b)] but belongs to the same wave
pair is attracted by the domain wall. In the course of in-
teraction of a cognate dislocation with the domain wall
two processes may be observed: annihilation with one of
the dislocations in the chain (when the dislocations in the
domain wall and the individual dislocation have opposite
topological charges) or building of the individual disloca-
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FIG. 7. Dislocations passing through the wall for €=0.47
and f=100 Hz. Repetition rate for frames 1 and 2, 2 and 3 is
0.24 s, and for the other frames 0.12 s.
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tion in the domain wall (when the dislocations have like
topological charges). The distance between the disloca-
tions in the domain wall increases when annihilation
occurs and decreases when the dislocations build in the
domain wall. In the second case, the dislocation belong-
ing to the wave pair that no other dislocations belong to
may go through the domain wall (see Fig. 7). To make
the picture more illustrative we filtered the image of rip-
ples so that there remained only the waves in which the
defects form a domain wall. The location of the defects
forming the dislocation belonging to the orthogonal wave
pair at different instants of time is shown by crosses in
Fig. 7. As the dislocation is moving across the wall, the
other dislocations also change their relative position; as a
result of this the wall bends (Fig. 7, picture 5). After the
dislocation has crossed the domain wall, the latter almost
recovers its original state.

C. Discussion of results

The topological defects revealed in the experiment
refer, strictly speaking, to image brightness fields. The
relationship between the brightness field and the field of
capillary waves is rather complicated, and frequently am-
biguous. Therefore it is not a trivial task to reconstruct
the field of capillary ripples immediately by its image.
We can propose, however, models for the fields of capil-
lary ripples which describe the distribution of image
brightness observed in experiments. Let the waves

n=1+[aexp(ikx)+a_exp(—ikx)+b  exp(ikx)
+b _exp(—iky)]exp(—iwt)+c.c. (1)

be excited on the surface of a liquid.

Suppose that the waves have equal amplitudes and
phases a . =a_ =b _ =b_ =a and the wave propagating
along the 0X axis contains a topological defect. The field
of capillary ripples corresponding to this case is present-
ed in the form [6]

n=a{cos(ky)+ f (r)cos[kx +arctan(y /x)]}cos(wt) ,
(2)

where f () is the function f =tanh[«(x2+y?2)!/?] vanish-
ing to zero for =0 and f—1 for r — oo.

As shown in [6], the distribution of the image bright-
ness of capillary ripples, 81, for k ~ k resembles the image
of a single dislocation recorded in experiment assuming
that

8I~{7n*) . 3)

Calculations of the complex amplitude of the image of
capillary ripples specified in (2) show that the fields | 4]
and ¢ differ from those obtained in experiment. The
principal difference is that the defect with topological
charge 41 is located at the point x=0, y=0 of the image
brightness of capillary ripples. It was revealed in experi-
ment that each dislocation consists of two 27 topological
charges located along the direction of wave propagation
in the pair. This suggests that a good agreement between
experiment and model may be obtained if we assume that
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the dislocation consists of two defects belonging to the waves traveling in opposite directions. Under this assumption

the capillary wave field may be written in the form

n=%(cos(wt —ky)+cos(wt +ky)~+tanh{k[(x —x;)?+(y —y,)*1"?}cos{wt +kx +arctan[(y —y,)/(x —x )1}

+tanh{x[(x —x,)2+(y —y,)?]""*}cos{wt —kx —arctan[(y —y,)/(x —x,)]1}) . 4)

The field (4) transforms into (2) if we set x;_; =0 and
Y1-2=0.

We note that only the dislocations consisting of pairs
of defects were observed in our experiment. Such a pair
of defects, evidently, forms a state possessing a consider-
able reserve of stability due to strong coupling of the
capillary waves propagating in opposite directions in a
spatially uniform pump field. As follows from the experi-
ment, the distance d| between the defects along the direc-
tion of wave propagation amounts to about (1.5-2.5)A
(where A is the wavelength of perturbations), and in the
transverse direction it is d; ~(0-0.5)A. Such a distance
between defects is typical of both a single dislocation
(Fig. 2) and the dislocations forming a linear chain (Figs.
6 and 7), i.e., a domain wall. The domain boundary is a
double row of defects.

We now consider the simplest theoretical model of a
domain wall for parametrically excited ripples. The
equations for slowly varying complex amplitudes of pairs
of capillary ripples parametrically excited on the surface
of a liquid were considered in [4]. It was ascertained that
the envelope waves in mutually orthogonal pairs interact
only weakly, therefore the equations for amplitudes in
each pair can be investigated independently. For slowly
varying amplitudes a, of the waves propagating along
the OX axis, regarding the coefficients of nonlinear wave
interaction to be purely real (there is no linear damping),
and restricting the consideration to a stationary case (the
amplitudes a are time independent), we have [4]

_ Oay iaza:t__ oy &
+vg—éx——v357€-—ay—2—yai——1Ha;c+1Aai

+ia (Tlay |*+Slax 1> . ()

Here v, is the group velocity of the waves, v is the capil-
lary wave damping, H is the coefficient of interaction
with the pump field, S and T are the coefficients of non-
linear wave coupling, and A is falling out of exact synch-
ronism with pump frequency.

For real amplitudes 4, and phase ®=¢_ +¢_, where

ay= A exp(tik,ylexplip,) , (6)

the equations of motion reduce to the form [4]

a4, .
Vg ax =—yA,+HA_sin® ,
34 _ _
vg—é;—=yA_—HA+sm<I>, (7)
A_ A
%;:= T—A—+ Hcos®+(S—T)( A% —A%) .
+ -—

[
Note that the parameter k, does not enter into the system
(7) which has the integral of motion A4, A_cos®
+rA% A% =const, where r =(T —S)/2H.

The system (7) on a phase plane was investigated to the
full extent in [4]. It was shown, in particular, that it has
a separatrix, the motion along which corresponds to the

transition from the equilibrium state 4, =A4_= 4, to
the equilibrium state 4 . = 4 _ = — 4, where
1/4
_ |4H =) ®)
| (s—1p
Such a separatrix is presented in Fig. 8 for

e=(H —y)/y=0.5, r=1500 1/cm? and the damping
coefficient for capillary waves ¥y =30 s~ '. The distance
along the OX axis is taken in wavelengths. The points at
which the amplitudes 4, and 4 _ of the envelope waves
turn to zero are at a distance of Ax ~2. This is in a good
agreement with the data of experiment (see Fig. 6) if the
distances between these points in the one-dimensional
model (7) are compared with the distance between the de-
fects in each dislocation. Note that, according to calcula-
tions, the distance between Ax depends rather weakly on
the parameter r (when the latter changes by three orders
of magnitude while Ax remains practically unchanged)
and is determined, primarily, by wave damping ¥ and su-
percriticality €.

The presence of a free parameter «,7-0 allows us to ob-
tain in the frames of this model the domain walls located
at a small angle to the fronts of capillary waves. Note
that a zero density of dislocations should correspond to
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FIG. 8. Variation of the wave amplitude in a domain wall.
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such domain walls in experiment because the fronts in the
pair of capillary waves (6) do not change their orientation
in the transition through such a domain wall.

The change of wave front orientation and emergence of
defects are described by the solution of (7) that trans-
forms to a, = Aqexp(tik,ylexp(ig,) for x —— o and
to ay =— Agexp( Fik,ylexplipy) for x —+ . Unfor-
tunately, we failed to find an exact solution to (7)
that would meet these conditions. One can derive
an approximate solution to (7) by matching
the solutions a; =4 exp(tik,ylexplip;) and ay
= A exp( Fik,plexplip) at the points where 4, =0
and 4_=0. Note that only the individual phases ¢
and ¢_ make a jump at the points of matching, whereas
the solutions for 4, and ¢ remain smooth.

The proposed model predicting the existence of the
domain wall is rather crude, of course. It does not take
into consideration the effects associated with discrete po-
sition of the dislocations or the nonlinear damping which
may be rather significant. However, this model accounts
for the main effect of interest to us, i.e., for the paramet-
ric coupling of counterpropagating waves, and describes
correctly the characteristic feature observed in the exper-
iment, namely a double domain wall.

III. CONCLUSION

Experiments on investigation of the dislocations in
parametrically excited capillary ripples demonstrate that
their structure and dynamics differ greatly from the
structure and dynamics of the dislocations observed at
thermoconvection or at electrohydrodynamic convection
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in liquid crystals. This difference lies primarily in that
each dislocation is a bound state of two topological de-
fects of the same sign belonging to counterpropagating
capillary waves. The stability of such a bound state is
due to the parametric pump field.

The dynamics of dislocations in the capillary ripples
consisting of two mutually orthogonal pairs of standing
waves is significantly affected by weak interaction of the
dislocations belonging to different pairs, whereas the
dislocations belonging to the same pair interact
effectively. They annihilate if they have opposite topo-
logical charges and may be self-organized in the form of a
linear chain if they have like charges.

The results presented in this paper pose new questions.
It is highly important to elucidate, for example, what
determines the periodicity of dislocations in the domain
wall shown in Fig. 7 and whether the effect of pinning ex-
ists in parametrically excited ripples when the position of
dislocations is correlated with the wave phases in mutual-
ly orthogonal pairs.
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(d)

FIG. 2. (a) Field of capillary ripples. (b) Fourier spectrum.
The dashed lines mark the spectral peaks for which the en-
velope fields were investigated. (c) Field of the amplitude of en-
velope for spectral peak 1. (d) Field of the phase of envelope for

spectral peak 1.
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FIG. 6. Linear chain of dislocations for e=0.47 and f=102
Hz: (a) image of capillary ripples; (b) filtered and contrasted im-
age of a single wave pair.



FIG. 7. Dislocations passing through the wall for e=0.47
and f=100 Hz. Repetition rate for frames 1 and 2, 2 and 3 is
0.24 s, and for the other frames 0.12 s.



